2.1 R 获取物种分布信息

```{r eval=FALSE}

基于dismo包的gbif

gbif下载数据前需要区gibif数据网站模糊匹配

species <- gbif('crotalus','horridus')

如下载西藏沙棘的物种分布数据

sahj <- gbif("Hippophae tibetana Schltdl.") View(sahj)


```{r eval=FALSE}
##基于 rgbif包occ—_search()
library(rgbif)
species <- "Cariniana legalis"
occs <- occ_search(scientificName = species,return = "data") # retarn可调参;
nrow(occs) #number of records

```{r eval=FALSE}

基于spocc包的occ()

感觉这个包可以设置更多的参数:

bv <- spocc::occ('Myrmecophaga tridactyla', 'gbif', limit=5000, has_coords=TRUE)

download from GBIF

bv <- spocc::occ('Myrmecophaga tridactyla', 'gbif', limit=5000, has_coords=TRUE)

extract coordinates

occs <- bv$gbif$data$Myrmecophaga_tridactyla[,2:3]


### 2.2 读取本地数据

``` {r eval=FALSE} 
##read.csv(path=paste0(system.file(package="dismo"), '/ex/bradypus.csv')
xiz <- read.csv(path=paste0("E:/globaltest2","/hh.csv"))

```{r eval=FALSE}

读取xlxs格式数据

library(readxl) jj <- read_excel("C:/Users/admin/Desktop/jj.xlsx") View(jj) ```

2.2.1 读取超大型物种分布数据矩阵

```{r eval=FALSE}

使用R::fread::data.table()

相比于R自带的read.table()至少提高5倍效率;

```

results matching ""

    No results matching ""